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Abstract. We formulate certain numerical problems with stochastic
numbers and compare algebraically obtained results with experimental
results provided by the CESTAC method. Such comparisons give addi-
tional information related to the stochastic behavior of random roundings
in the course of numerical computations. The good coincidence between
theoretical and experimental results confirms the adequacy of our alge-
braic model and its possible application in the numerical practice.
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1 Introduction

Stochastic numbers are gaussian random variables with a known mean value and
a known standard deviation. Some fundamental properties of stochastic num-
bers are considered in [9]. The mean values of the stochastic numbers satisfy
the usual real arithmetic, whereas standard deviations are added and multiplied
by scalars in a specific way. As regard to addition standard deviations form
an abelian monoid with cancellation law. This monoid can be embedded in an
additive group and after a suitable extension of multiplication by scalars one
obtains a so-called s-space, which is in fact a vector space with a specifically
defined multiplication by scalar [2], [4]. This allows us to introduce in s-spaces
concepts like linear combination, basis, dimension etc. Thus, in theory, compu-
tations in s-spaces are reduced to computations in vector spaces. This opens the
road to finding explicit expressions for the solution of certain algebraic problems
involving stochastic numbers.

Alternatively, stochastic numbers can be computed experimentally using the
CESTAC method, which is a Monte-Carlo method consisting in performing each
arithmetic operation several times using an arithmetic with a random rounding
mode [3], [7], [8]. For a survey of methods using Monte-Carlo arithmetic see [6].
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In Sections 2 we briefly present the main results of our theory of s-spaces as
regard to the arithmetic operations for addition and multiplication by scalars
needed for the purposes of this study; for a detailed presentation of the theory, see
[4]. Section 3 considers the algebraic solution of linear systems of equations with
right-hand sides involving stochastic numbers. In Section 4 we extend further our
idea from [5] to compare the theoretic solution of an algebraic problem involv-
ing stochastic numbers with the solution obtained numerically by the CESTAC
method. Numerical experiments are reported and a good coincidence between
theoretical and experimental results is observed.

2 Stochastic Numbers and Stochastic Arithmetic

By R we denote the set of reals; the same notation is used for the linearly
ordered field of reals R = (R, +, ·, ≤). For any integer n ≥ 1 we denote by R

n

the set of all n-tuples (α1, α2, ..., αn), αi ∈ R. The set R
n forms a vector space

under the familiar operations of addition and multiplication by scalars denoted
by Vn = (Rn, +, R, ·), n ≥ 1. By R

+ we denote the set of nonnegative reals.

2.1 The Arithmetic for Stochastic Numbers

A stochastic number X = (m; s) is a gaussian random variable with mean value
m ∈ R and (nonnegative) standard deviation s ∈ R

+. The set of all stochastic
numbers is S = {(m; s) | m ∈ R, s ∈ R

+}. Let X1 = (m1; s1), X2 = (m2; s2) ∈ S.
Addition and multiplication by scalars are defined by:

X1 + X2 = (m1; s1) + (m2; s2)
def
=

(
m1 + m2;

√
s2
1 + s2

2

)
,

γ ∗ X = γ ∗ (m; s)
def
=

(
γm; |γ|s

)
, γ ∈ R.

It has to be noticed that the operations on stochastic numbers are error free and
are only used for theory. In this approach stochastic numbers are only used as a
model for computation on data containing errors.

A stochastic number of the form (0; s), s ∈ R
+, is called (centrally) symmet-

ric. If X1, X2 are symmetric stochastic numbers, then X1+X2 and λ∗X1, λ ∈ R,
are also symmetric stochastic numbers. Thus there is a 1–1 correspondence be-
tween the set of symmetric stochastic numbers and the set R

+. We shall use
special symbols “⊕”, “∗” for the arithmetic operations over standard deviations,
as these operations are different from the corresponding ones for numbers. The
operations “⊕”, “∗” induce a special arithmetic on the set R

+. Consider the
system (R+, ⊕, R, ∗), such that for s, t ∈ R

+, γ ∈ R:

s ⊕ t =
√

s2 + t2, γ ∗ s = |γ|s. (1)

Proposition 1. [4] The system (R+, ⊕, R, ∗) is an abelian additive monoid with
cancellation, such that for s, t ∈ R

+, α, β ∈ R:
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α ∗ (s ⊕ t) = α ∗ s ⊕ α ∗ t, (2)
α ∗ (β ∗ s) = (αβ) ∗ s, (3)

1 ∗ s = s, (4)
(−1) ∗ s = s, (5)√

α2 + β2 ∗ s = α ∗ s ⊕ β ∗ s, α, β ≥ 0. (6)

More generally, we can extend componentwise operations (1) for n-tuples s =
(s1, ..., sn), si, ∈ R

+, that is,

(s1, ..., sk) ⊕ (t1, ..., tk) = (s1 ⊕ t1, ..., sk ⊕ tk), (7)
γ ∗ (s1, s2, ..., sk) = (|γ|s1, |γ|s2, ..., |γ|sk), γ ∈ R. (8)

The corresponding system ((R+)n, ⊕, R, ∗) again satisfies the conditions of
Proposition 1. A system satisfying the conditions of Proposition 1 is called an
s-space of monoid structure. Such a structure can be naturally embedded into a
group, obtaining thus an s-space of group structure, as shown below.

2.2 The S-Space of Group Structure

For s ∈ R denote τ(s) = {+, if s ≥ 0; −, if s < 0}. We extend the operation
addition “⊕” for all s, t ∈ R, admitting thus negative reals, corresponding to
improper standard deviations:

s ⊕ t
def
= τ(s + t)

√
|τ(s)s2 + τ(t)t2|. (9)

We note that τ(s + t) = τ(τ(s)s2 + τ(t)t2) = τ(s ⊕ t) for s, t ∈ R. Using (9) we
embed isomorphically the monoid (R+, ⊕) into the system (R, ⊕), which is an
abelian group with null 0 and opposite element opp(s) = −s, i. e. s ⊕ (−s) = 0.
Indeed, from (9) we have s ⊕ (−s) = τ(s − s)

√
|τ(s)s2 − τ(s)s2| = τ(0)

√
0 = 0.

Here are some examples of addition in the system (R, ⊕): 1⊕1 =
√

2, 1⊕2 =
√

5,
3 ⊕ 4 = 5, 4 ⊕ (−3) =

√
7, 3 ⊕ (−4) = −

√
7, 5 ⊕ (−4) = 3, 4 ⊕ (−5) = −3,

(−3) ⊕ (−4) = −5, 1 ⊕ 2 ⊕ 3 =
√

14, 1 ⊕ 2 ⊕ (−3) = −2.
Using (9) and τ(s1 ⊕ ... ⊕ sn) = τ(s1 + ... + sn) we obtain for n ≥ 2

s1 ⊕ s2 ⊕ ... ⊕ sn = τ(s1 + ... + sn)
√

|τ(s1)s2
1 + ... + τ(sn)s2

n|. (10)

Proposition 2. For s1, s2, ..., sn, t ∈ R the equation s1 ⊕ s2 ⊕ ... ⊕ sn = t is
equivalent to τ(s1)s2

1 + ... + τ(sn)s2
n = τ(t)t2.

The proof follows immediately from the fact that the equation τ(s)
√

|s| = t
implies s = τ(t)t2, and, in particular, τ(t) = τ(s).

Multiplication by scalars is naturally extended on the set R of generalized
standard deviations by: γ ∗ s = |γ|s, s ∈ R. Multiplication by −1 (negation) is
(−1) ∗ s = | − 1|s = s, s ∈ R, in accordance with (4)–(5). To avoid confusion
we shall write the scalars always to the left side of the standard deviation.
Under this convention we have, e. g. (−2) ∗ 2 = 4, whereas 2 ∗ (−2) = −4.
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Note that if s is a standard deviation, then we have γ ∗ s = (−γ) ∗ s for any
γ ∈ R; thus multiplication by negative scalar does not change the type of s
(proper/improper).

It is easy to check that all conditions (2)–(6) of Proposition 1 hold true for
generalized standard deviations. This justifies the following definition:

Definition 1. A system (S, ⊕, R, ∗), such that: i) (S, ⊕) is an abelian additive
group, and, ii) for any s, t ∈ S, α, β ∈ R relations (2)–(6) hold, is called an
s-space over R (with group structure).

3 Linear Systems with Stochastic Right-Hand Side

3.1 Canonical S-Spaces and Dot Product

For any integer k ≥ 1 the set S = R
k of all k-tuples (s1, s2, ..., sk) forms an

s-space over R under the operations (7)–(8), whenever the sums si ⊕ ti in (7)
are defined by (9). The s-space Sk = (Rk, ⊕, R, ∗) is the canonical s-space (of
standard deviations). In the s-space Sk we introduce a scalar (dot) product.
Namely, for α = (α1, α2, ..., αk) ∈ R

k, s = (s1, s2, ..., sk) ∈ Sk we define α ∗ s =
α1 ∗ s1 ⊕ α2 ∗ s2 ⊕ ... ⊕ αk ∗ sn.

Using (10) we obtain for α = (α1, α2, ..., αk) ∈ R
k, s = (s1, s2, ..., sk) ∈ Sk

α ∗ s = α1 ∗ s1 ⊕ ... ⊕ αk ∗ sk = τ(α ∗ s)
√

|α2
1τ(s1)s2

1 + ... + α2
kτ(sk)s2

k|.

Example 1. Let αi = 1, si = s, i = 1, ..., k. Then α ∗ s = s ⊕ ...(k times) ⊕ s =
τ(s)

√
ks2 = s

√
k. This fact has been already known for long [1].

Proposition 3. For α = (α1, α2, ..., αk) ∈ R
k, (s1, s2, ..., sk) ∈ Sk the equation

α ∗ s = t is equivalent to α2
1τ(s1)s2

1 + ... + α2
kτ(sk)s2

k = τ(t)t2.

Remark. It is used in the proof that τ(αi ∗ si) = τ(si).

3.2 S-Spaces and Their Relation to Vector Spaces

Proposition 4. Let (S, +, R, ∗) be an s-space over R. Then the system (S, +, R, ·)
where the operation “·”: R × S −→ S is defined by

α · c =

{√
|α| ∗ c, if α ≥ 0;√
|α| ∗ (−c), if α < 0,

(11)

is a vector space over R. Conversely, let (S, +, R, ·) be a vector space over R.
The system (S, +, R, ∗) is an s-space over R whenever “∗” is defined by

α ∗ c = α2 · c. (12)

Proposition 4 shows that each one of the two associted spaces (S, +, R, ∗) and
(S, +, R, ·) can be obtained from the other one by a redefinition of the operation
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multiplication by scalars using (11), resp. (12). Assume that S = (S, +, R, ∗) is
an s-space over R and (S, +, R, ·) is the associated vector space. All vector space
concepts from the vector space (S, +, R, ·), such as linear combination, linear
dependence, basis etc., apply to the s-space (S, +, R, ∗) [4].

Theoretically stochastic numbers are defined as elements of the direct sum
V ⊕ S of a vector space V and a s-space S both of same dimension k. Namely,
let V = Vk be a k-dimensional vector space with a basis (v(1), ..., v(k)) and
let S = Sk be a k-dimensional s-space having a basis (s(1), ..., s(k)). Then
(v(1), ..., v(k); s(1), ..., s(k)) is a basis of the k-dimensional space Vk ⊕ Sk. Such a
setting allows us to consider numerical problems involving vectors and matrices,
wherein certain numeric variables have been substituted by stochastic ones.

3.3 Stochastic Linear Systems

We consider a linear system Ax = b, such that A is a real n × n-matrix and
the right-hand side b is a vector of stochastic numbers. Then the solution x
also consists of stochastic numbers, and, respectively, all arithmetic operations
(additions and multiplications by scalars) in the expression Ax involve stochastic
numbers; we denote this by writing A ∗ x instead of Ax.

Problem. Assume that A = (αij)n
i,j=1, αij ∈ R, is a real n × n-matrix, and

b = (b′; b′′) is a n-tuple of (generalized) stochastic numbers, such that b′, b′′ ∈ R
n,

b′ = (b′1, ..., b
′
n), b′′ = (b′′1 , ..., b′′n). We look for a (generalized) stochastic vector

x = (x′; x′′), x′, x′′ ∈ R
n, satisfying the system A ∗ x = b.

Solution. Due to A∗x = A∗(x′; x′′) = (Ax′; A∗x′′) the system A∗x = b reduces
to a linear system Ax′ = b′ for the vector x′ = (x′

1, ..., x
′
n) of mean values and a

system A ∗ x′′ = b′′ for the standard deviations x′′ = (x′′
1 , ..., x′′

n). If A = (αij) is
nonsingular, then x′ = A−1b′. We shall next concentrate on the solution of the
system A ∗ x′′ = b′′ for the standard deviations.

The i-th equation of the system A∗x′′ = b′′ reads αi1 ∗x′′
1 ⊕ ...⊕αin ∗x′′

n = b′′i .
According to Proposition 3, this is equivalent to

α2
i1τ(x′′

1 )x′′2
1 + ... + α2

inτ(x′′
n)x′′2

n = τ(b′′i )b′′2i , i = 1, ..., n.

Setting τ(x′′
i )(x′′

i )2 = yi, τ(b′′i )(b′′i )2 = ci, we obtain a linear n × n system
Dy = c for y = (yi), where D = (α2

ij), c = (ci). If D is nonsingular we can solve
the system Dy = c for the vector y, y = D−1c, and then obtain the standard
deviation vector x′′ by means of x′′

i = τ(yi)
√

|yi|. Thus for the solution of the
original problem it is necessary and sufficient that both matrices A = (αij) and
D = (α2

ij) are nonsingular.
Summarizing, to solve A ∗ x = b we perform the following steps:

i) check the matrices A = (αij) and D = (α2
ij) for nonsingularity;

ii) find the solution x′ = A−1b′ of the linear system Ax′ = b′;
iii) find the solution y = D−1c of the linear system Dy = c, where c = (ci),

ci = τ(b′′i )(b′′2i ). Compute x′′
i = τ(yi)

√
|yi|; then the solution of A ∗ x = b is

x = (x′; x′′).
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4 Numerical Experiments

Numerical experiments have been performed in order to compare the theoretical
results with numerical results obtained by means of the CESTAC method for
imprecise stochastic data.

Scalar Product. Let α be a real vector of size N with αi = i, i = 1, ..., N .
Assume that b is a stochastic vector of size N . All samples for the components
of b have been generated with a gaussian generator with mean value m = 1 and
standard deviation σ = 0.001.

Theoretically, the standard deviation of the dot product α ∗ b is equal to
σ
√

N(N + 1)(2N + 1)/6. On the other hand, according to the theory of the
CESTAC method, a stochastic number can be represented by an n-tuple of
random values with a known mean value m and a known standard deviation σ.
In our examples n = 3 as implemented in the CADNA software [3].

With the above conditions (m = 1, σ = 0.001) the scalar product α ∗ b has
been computed k times for various sizes N = 10, 100, ..., 10000. For each size N
the mean value δ of the standard deviation δi of the result (i = 1, 2, ..., k) has
been computed.

This provides samples of size k whose mean values approximate the theoretical
standard deviation.

Table 1 reports the percentages of cases where the theoretical standard devia-
tion σ

√
N(N + 1)(2N + 1)/6 is outside the computed confidence interval. These

percentages have been computed with 1000 runs.

Comments: From Table 1, it is clear a posteriori that the distribution of the scalar
product is effectively gaussian, as a size of 4 to 5 for the samples is enough to
approximate the theoretical value, whereas if this were not the case, then the
samples should have rather be of size 30.

4.1 Solution of a Linear System A ∗ x = b

In this numerical example A is a real matrix such that aij = i, if i = j, else
aij = 10−|i−j|, i, j = 1, .., N , N = 10. Assume that b is a stochastic vector such
that the component bi is generated with a gaussian generator with a mean value∑n

j=1 aij and a standard deviation equal to 1.e − 4 = 10−4. With such kind of
system, the solutions xi are around 1.

The theoretical standard deviations on each component of the solution are
obtained according the method described in the previous section. First the ma-
trix D is computed from matrix A. Then the system y = D−1c is solved, and

Table 1. Percentages of theoretical standard deviation outside the confidence interval

N \ k 3 4 5 6 7 10
10 12.1 6.3 3.3 2.1 1.5 0.3

100 12.6 5.3 3.8 2.3 1.0 0.3
1000 13.2 4.6 3.9 1.6 1.4 0.2

10000 11.6 5.4 2.9 1.9 1.4 0.2
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Table 2. Theoretical and computed standard deviations

Component i Theoretical mean value of the computed
standard deviation x′′ standard deviations

1 9.98e-05 10.4e-05
2 4.97e-05 4.06e-05
3 3.32e-05 3.21e-05
4 2.49e-05 2.02e-05
5 1.99e-05 1.81e-05
6 1.66e-05 1.50e-05
7 1.42e-05 1.54e-05
8 1.24e-05 1.02e-05
9 1.11e-05 0.778e-05
10 0.999e-05 0.806e-05

the standard deviations are computed with the formula x′′
i = τ(yi)

√
|yi|. The

values x′′
i are given in the first column in Table 2.

The experimental results only concern the standard deviations on the compo-
nents of the solution. They are obtained in the following way: 30 different vectors
b(k), k = 1, ..., 30 and thus 30 systems A ∗ x = b(k) are generated as above. Then
they are solved using the CADNA software using Gaussian elimination. This
CADNA software provides the standard deviation of each component the solu-
tion. In the end, the mean value of the standard deviations of the 30 samples are
computed for the N = 10 components and printed in Table 2. As we can see in
Table 2, the theoretical standard deviations and the computed values are very
close to each other.

The influence of the variation of the error σ on the right hand side b on the
results is studied as follows: The same as above procedure is performed but here
only the first component of the solution is considered. As before, 30 solutions for
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Fig. 1.
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x are obtained and the standard deviations of the 30 first components x(1) and
their corresponding mean value named δ̄i(1) are computed. This procedure has
been performed 1000 times. Therefore, we obtained 1000 values for δ̄i(1) which
are classified in 20 classes from 0.5x′′

i to 1.5x′′
i . The graphs of the number of

elements in each class obtained with the 4 values of σ = 1.e − 4, 1.e − 3, 1.e −
2, 1.e − 1 are reported in Fig. 1.

5 Conclusion

The theoretic study of the properties of stochastic numbers with respect to the
operations addition and multiplication by scalars allows the solution of certain
algebraic problems involving stochastic numbers. This gives us a possibility to
compare algebraically obtained results with practical applications of stochastic
numbers, such as the ones provided by the CESTAC method [3]. Such compar-
isons give additional information related to the stochastic behaviour of random
roundings in the course of numerical computations. It may be expected that the
proposed theory can be used in the computational practice.
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